Показатель адиабаты влажного пара

Значения коэффициента В1 для насыщенного пара

Значения коэффициента В1 для перегретого пара

или определяют по формуле:
для давления в МПа

для давления в кгс/см 2

где К — показатель адиабаты, равный 1,35 для насыщенного пара, 1,31 для перегретого пара;

Р1 — максимальное избыточное давление перед предохранительным клапаном, МПа;

V1 — удельный объем пара перед предохранительным клапаном, м 3 /кг.

(Измененная редакция, Изм. № 2).

Формула для определения пропускной способности клапана должна применяться только при условии: 2+0,1)≤(Р1+0,1) βкр для давления в МПа или 2+1)≤(Р1+1)βкр для давления в кгс/см 2 , где

Р2 — максимальное избыточное давление за предохранительным клапаном в пространстве, в которое истекает пар из котла (при истечении в атмосферу Р2 = 0 МПа (кгс/см 2 );

βкр — критическое отношение давлений.

Для насыщенного пара βкр=0,577, для перегретого пара βкр=0,546.

5.3. Коэффициент α принимают равным 90% от значения, полученного предприятием-изготовителем на основании проведенных испытаний.

МЕТОДЫ КОНТРОЛЯ

6.1. Все предохранительные клапаны должны быть испытаны на прочность, плотность, а также герметичность сальниковых соединений и уплотнительных поверхностей.

6.2. Объем испытаний клапанов, их порядок и методы контроля должны быть установлены в технических условиях на клапаны конкретного типоразмера.

СОДЕРЖАНИЕ

1. Общие требования
2. Требования к предохранительным клапанам прямого действия

3. Требования к предохранительным клапанам, управляемым при помощи вспомогательных устройств

4. Требования к подводящим и отводящим трубопроводам предохранительных клапанов

5. Пропускная способность предохранительных клапанов
6. Методы контроля

При устройстве газопровода, водопроводной и канализационной систем, а также других промышленных инженерных систем не обойтись без вентилей и задвижек. Многие считают, что вентили являются разновидностью задвижек, только меньшего размера, но на самом деле это разные устройства, имеющие существенные конструкционные отличия, определяющие особенности их эксплуатации. Вентили и задвижки имеют свои плюсы и минусы, которые и определяют оптимальный выбор устройства для конкретных условий применения.

Что такое вентиль и задвижка?

Вентиль – это прибор, который устанавливается на газо-, воздухо-, водо-, паро-, масло- и иные трубопроводы для открытия и закрытия проходных отверстий с помощью клапана. Вентиль состоит из стального, чугунного или бронзового корпуса, имеющего седло для клапана, самого клапана со шпинделем с винтовой нарезкой и рукоятки, обеспечивающей возможность вращения шпинделя. К трубопроводу вентили присоединяются с помощью резьбы или фланцев и подразделяются на муфтовые и фланцевые.

Вентиль в разрезе

Задвижка– это прибор, который устанавливается на трубопроводы для открытия и закрытия проходных отверстий с помощью клапана, перемещающегося перпендикулярно по отношению к оси потока рабочей среды. В зависимости от конструкции запорного органа задвижки подразделяются на шланговые, шиберные и параллельные. Шпинделя же могут быть выдвижными или вращаемыми.

Источник статьи: http://helpiks.org/5-91774.html

Показатели адиабаты: определение и процесс

При изучении поведения газов в физике много внимания уделяется изопроцессам, то есть таким переходам между состояниями системы, во время которых сохраняется один термодинамический параметр. Тем не менее, существует газовый переход между состояниями, который не является изопроцессом, но который играет важную роль в природе и технике. Речь идет об адиабатическом процессе. В данной статье рассмотрим его подробнее, акцентируя внимание на том, что такое показатель адиабаты газа.

Адиабатический процесс

Согласно термодинамическому определению, под адиабатическим процессом понимают такой переход между начальным и конечным состояниями системы, в результате которого не существует обмена теплом между внешней средой и изучаемой системой. Такой процесс возможен при наличии следующих двух условий:

  • теплопроводность между внешней средой и системой по той или иной причине является низкой;
  • скорость процесса велика, поэтому обмен теплом не успевает происходить.

В технике адиабатный переход используют как для разогрева газа при его резком сжатии, так и для его охлаждения во время быстрого расширения. В природе рассматриваемый термодинамический переход проявляет себя, когда воздушная масса поднимается или опускается по склону холма. Такие подъемы и спуски приводят к изменению точки росы в воздухе и к возникновению осадков.

Уравнение Пуассона для адиабаты идеального газа

Идеальный газ представляет собой систему, в которой частицы движутся хаотично с большими скоростями, не взаимодействуют друг с другом и являются безразмерными. Такая модель является очень простой с точки зрения ее математического описания.

Согласно определению адиабатного процесса, можно записать следующее выражение в соответствии с первым законом термодинамики:

Иными словами, газ, расширяясь или сжимаясь, совершает работу P*dV за счет соответствующего изменения своей внутренней энергии dU.

В случае идеального газа, если воспользоваться уравнением его состояния (закон Клапейрона-Менделеева), то можно получить следующее выражение:

Это равенство называется уравнением Пуассона. Люди, которые знакомы с физикой газов, заметят, что если величина γ будет равна 1, то уравнение Пуассона перейдет в закон Бойля-Мариотта (изотермический процесс). Однако такое преобразование уравнений невозможно, поскольку γ для любого типа идеального газа больше единицы. Величина γ (гамма) называется показателем адиабаты идеального газа. Рассмотрим подробнее его физический смысл.

Что такое показатель адиабаты?

Показатель γ, который появляется в уравнении Пуассона для газа идеального, представляет собой отношение теплоемкости при постоянном давлении к аналогичной величине, но уже при постоянном объеме. В физике теплоемкостью называют величину теплоты, которую нужно передать данной системе или забрать у нее, чтобы она изменила свою температуру на 1 Кельвин. Будем обозначать символом CP изобарную теплоемкость, а символом CV — изохорную. Тогда для γ справедливо равенство:

Поскольку γ всегда больше одного, то он показывает, во сколько раз изобарная теплоемкость изучаемой газовой системы превышает аналогичную изохорную характеристику.

Теплоемкости CP и CV

Чтобы определить показатель адиабаты, следует хорошо понимать смысл величин CP и CV. Для этого проведем следующий мысленный эксперимент: представим, что газ находится в закрытой системе в сосуде с твердыми стенками. Если нагревать сосуд, то все сообщенное тепло в идеальном случае перейдет во внутреннюю энергию газа. В такой ситуации будет справедливо равенство:

Величина CV определяет количество теплоты, которое следует передать системе, чтобы изохорно нагреть ее на 1 К.

Теперь предположим, что газ находится в сосуде с подвижным поршнем. В процессе нагрева такой системы поршень будет перемещаться, обеспечивая поддержание постоянного давления. Поскольку энтальпия системы в таком случае будет равна произведению изобарной теплоемкости на изменение температуры, то первый закон термодинамики примет вид:

Отсюда видно, что CP>CV, так как в случае изобарного изменения состояний необходимо расходовать тепло не только на повышение температуры системы, а значит, и ее внутренней энергии, но и на выполнение газом работы при его расширении.

Величина γ для газа идеального одноатомного

Самой простой газовой системой является одноатомный идеальный газ. Предположим, что мы имеет 1 моль такого газа. Напомним, что в процессе изобарного нагрева 1 моль газа всего на 1 Кельвин, он совершает работу, равную величине R. Этим символом принято обозначать универсальную газовую постоянную. Она равна 8,314 Дж/(моль*К). Применяя последнее выражение в предыдущем пункте для данного случая, получаем такое равенство:

Откуда можно определить значение изохорной теплоемкости CV:

Известно, что для одного моль одноатомного газа значение изохорной теплоемкости составляет:

Из последних двух равенств следует значение показателя адиабаты:

Отметим, что величина γ зависит исключительно от внутренних свойств самого газа (от многоатомности его молекул) и не зависит от количества вещества в системе.

Зависимость γ от числа степеней свободы

Выше было записано уравнение для изохорной теплоемкости одноатомного газа. Появившийся в нем коэффициент 3/2 связан с количеством степеней свободы у одного атома. У него существует возможность двигаться только в одном из трех направлений пространства, то есть существуют только поступательные степени свободы.

Если система образована двухатомными молекулами, то к трем поступательным добавляются еще две вращательные степени. Поэтому выражение для CV приобретает вид:

Тогда значение γ будет равно:

Отметим, что на самом деле существует у двухатомной молекулы еще одна колебательная степень свободы, но при температурах в несколько сотен Кельвин она не задействуется и не вносит вклад в теплоемкость.

Если молекулы газа состоят из более, чем двух атомов, тогда у них будет 6 степеней свободы. Показатель адиабаты при этом будет равен:

Таким образом, при увеличении числа атомов в молекуле газа величина γ уменьшается. Если построить график адиабаты в осях P-V, то можно заметить, что кривая для одноатомного газа будет вести себя более резко, чем для многоатомного.

Показатель адиабаты для смеси газов

Выше мы показали, что величина γ от химического состава газовой системы не зависит. Однако она зависит от количества атомов, которое составляет ее молекулы. Предположим, что система состоит из N компонент. Атомная доля компонента i в смеси равна ai. Тогда для определения показателя адиабаты смеси можно использовать следующее выражение:

Где γi — это величина γ для i-го компонента.

Например, это выражение можно применить для определения γ воздуха. Поскольку он состоит на 99 % из двухатомных молекул кислорода и азота, то его показатель адиабаты должен быть очень близок к значению 1,4, что подтверждается при экспериментальном определении этой величины.

Источник статьи: http://fb.ru/article/459900/pokazateli-adiabatyi-opredelenie-i-protsess

Показатель адиабаты

Термодинамика
Статья является частью одноименной серии.
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Показатель адиабаты (иногда называемый коэффициентом Пуассона) — отношение теплоёмкости при постоянном давлении () к теплоёмкости при постоянном объёме (). Иногда его ещё называют фактором изоэнтропийного расширения. Обозначается греческой буквой (гамма) или (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква [1] .

,

— теплоёмкость газа, — удельная теплоёмкость (отношение теплоёмкости к единице массы) газа, индексы и обозначают условие постоянства давления или постоянства объёма, соответственно.

Для понимания этого соотношения можно рассмотреть следующий эксперимент:

Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. Пока поршень не может двигаться, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает двигаться наружу без теплообмена с окружающей средой (воздух расширяется адиабатически). Совершая работу, воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа — воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру с закреплённом поршне, пропорционально , тогда как общее количество подведённой теплоты пропорционально . Таким образом, показатель адиабаты в этом примере равен 1.4.

Другой путь для понимания разницы между и состоит в том, что применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). применяется только если — а это выражение обозначает совершённую газом работу — равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.

Показатели адиабаты для различных газов [2] [3]
Темп. Газ γ Темп. Газ γ Темп. Газ γ
−181 °C H2 1.597 200 °C Сухой воздух 1.398 20 °C NO 1.400
−76 °C 1.453 400 °C 1.393 20 °C N2O 1.310
20 °C 1.410 1000 °C 1.365 −181 °C N2 1.470
100 °C 1.404 2000 °C 1.088 15 °C 1.404
400 °C 1.387 0°C CO2 1.310 20 °C Cl2 1.340
1000 °C 1.358 20 °C 1.300 −115 °C CH4 1.410
2000 °C 1.318 100 °C 1.281 −74 °C 1.350
20 °C He 1.660 400 °C 1.235 20 °C 1.320
20 °C H2O 1.330 1000 °C 1.195 15 °C NH3 1.310
100 °C 1.324 20 °C CO 1.400 19 °C Ne 1.640
200 °C 1.310 −181 °C O2 1.450 19 °C Xe 1.660
−180 °C Ar 1.760 −76 °C 1.415 19 °C Kr 1.680
20 °C 1.670 20 °C 1.400 15 °C SO2 1.290
0°C Сухой воздух 1.403 100 °C 1.399 360 °C Hg 1.670
20 °C 1.400 200 °C 1.397 15 °C C2H6 1.220
100 °C 1.401 400 °C 1.394 16 °C C3H8 1.130

Содержание

Соотношения для идеального газа

Для идеального газа теплоёмкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена как . Таким образом, можно также сказать, что показатель адиабаты — это отношение энтальпии к внутренней энергии:

С другой стороны, теплоёмкости могут быть выражены также через показатель адиабаты () и универсальную газовую постоянную ():

Может оказаться достаточно трудным найти информацию о табличных значениях , в то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :

где — количество вещества в молях.

Соотношения с использованием количества степеней свободы

Показатель адиабаты () для идеального газа может быть выражен через количество степеней свободы () молекул газа:

или

Таким образом, для одноатомного идеального газа (три степени свободы) показатель адиабаты равен:

,

в то время как для двуатомного идеального газа (пять степеней свободы) (при комнатной температуре):

.

Воздух на земле представляет собой в основном смесь двухатомных газов (около 78 % азота — N2, и около 21 % кислорода — O2), и при нормальных условиях его можно рассматривать как идеальный. Двухатомный газ имеет пять степеней свободы (три поступательных и две вращательных степени свободы; колебательная степень свободы не задействована, за исключением высоких температур). Как следствие, теоретически, показатель адиабаты для воздуха имеет величину:

.

Это хорошо согласуется с экспериментальными измерениями показателя адиабаты воздуха, которые приблизительно дают значение 1.403 (приведённое выше в таблице).

Соотношения для реальных газов

По мере того, как температура возрастает, более высокоэнергетические вращательные и колебательные состояния становятся достижимыми для молекулярных газов, и таким образом, количество степеней свободы возрастает, и уменьшается показатель адиабаты .

Для реальных газов, как , так и возрастают с увеличением температуры, при этом разность между ними остаётся неизменной (согласно приведённой выше формуле = ), и эта разность отражает постоянство величины , то есть работы, совершаемой при расширении. Величина представляет собой разницу между количествами подведённой теплоты при постоянном давлении и при постоянном объёме. Следовательно, отношение двух величин, , возрастает при увеличении температуры. См. также удельная теплоёмкость.

Термодинамические выражения

Значения, полученные с помощью приближённых соотношений (в частности, ), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких, как расчёты расходов через трубопроводы и клапаны. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения может быть вычислено путём определения из свойств, выраженных как:

Значения не составляет труда измерить, в то время как значения для необходимо определять из формул, подобных этой. См. здесь (англ.) для получения более подробной информации о соотношениях между теплоёмкостями.

Вышеприведённые соотношения отражают подход, основанный на развитии строгих уравнений состояния (таких, как уравнение Пенга — Робинсона [en] ), которые настолько хорошо согласуются с экспериментом, что для их применения требуется лишь незначительно развивать базу данных соотношений или значений . Значения могут быть также определены с помощью метода конечных разностей.

Адиабатический процесс

Для изоэнтропийного, квазистатического, обратимого адиабатного процесса, происходящего в простом сжимаемом идеальном газе:

где — это давление и — объём газа.

Экспериментальное определение величины показателя адиабаты

Поскольку процессы, происходящие в небольших объёмах газа при прохождении звуковой волны, близки к адиабатическим [4] , показатель адиабаты можно определить, измерив скорость звука в газе. В этом случае показатель адиабаты и скорость звука в газе будут связаны следующим выражением:

где — показатель адиабаты; — постоянная Больцмана; — универсальная газовая постоянная; — абсолютная температура в кельвинах; — молекулярная масса; — молярная масса.

Другим способом экспериментального определения величины показателя адиабаты является метод Клемана — Дезорма, который часто используется в учебных целях при выполнении лабораторных работ. Метод основан на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами: адиабатическим и изохорическим. [5]

Лабораторная установка включает стеклянный баллон, соединенный с манометром, краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.

Пусть первоначально в баллоне было атмосферное давление и комнатная температура. Процесс выполнения работы можно условно разбить на два этапа, каждый из которых включает в себя адиабатный и изохорный процесс.

1-й этап:
При закрытом кране накачиваем в баллон небольшое количество воздуха и зажимаем шланг зажимом. При этом давление и температура в баллоне повысятся. Это адиабатный процесс. Со временем давление в баллоне начнет уменьшаться вследствие того, что газ в баллоне начнёт охлаждаться за счет теплообмена через стенки баллона. При этом давление будет уменьшаться при построянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, запишем показания манометра .

2-ой этап:
Теперь откроем кран 3 на 1—2 секунды. Воздух в баллоне будет адиабатно расширяться до атмосферного давления. При этом температура в баллоне понизится. Затем кран закроем. Со временем давление в баллоне начнет увеличиваться вследствие того, что газ в баллоне начнет нагреваться за счет теплообмена через стенки баллона. При этом снова будет увеличиваться давление при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, запишем показание манометра . Для каждой ветви 2-х этапов можно написать соответствующие уравнения адиабаты и изохоры. Получится система уравнений, которые включают в себя показатель адиабаты. Их приближённое решение приводит к следующей расчетной формуле для искомой величины:

Недостатком данного метода является то, что процессы быстрого расширения газа в ходе лабораторной работы не являются чисто адиабатическими ввиду теплообмена через стенку сосудов, а рассматриваемый газ заведомо не является идеальным. И хотя полученная в ходе лабораторной работы величина будет заведомо содержать методическую погрешность, всё же существуют различные способы её устранения, например, за счет учета времени расширения и количества подведенного за это время тепла. [6]

См. также

Примечания

  1. Fox, R., A. McDonald, P. Pritchard: Introduction to Fluid Mechanics 6th ed. Wiley
  2. White, Frank M.: Fluid Mechanics 4th ed. McGraw Hill
  3. Lange’s Handbook of Chemistry, 10th ed. page 1524
  4. Савельев2001, с. 30—32
  5. http://www.physdep.isu.ru/kosm/method/obsh/lab/2-8.pdf
  6. http://www.physchem.msu.ru/doc/12_molecular.PDF

Wikimedia Foundation . 2010 .

Смотреть что такое «Показатель адиабаты» в других словарях:

показатель адиабаты — (γ(χ)) Отношение удельных теплоемкостей . [ГОСТ 23281 78] Тематики аэродинамика летательных аппаратов Обобщающие термины среда и ее характеристики EN isentropic exponent … Справочник технического переводчика

показатель адиабаты — savitųjų šiluminių talpų santykis statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. adiabatic exponent; adiabatic index; ratio of specific heats; ratio of the… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

показатель адиабаты — savitųjų šiluminių talpų santykis statusas T sritis fizika atitikmenys: angl. adiabatic exponent; ratio of the massic heat capacities; ratio of the specific heat capacities vok. Adiabatexponent, m rus. показатель адиабаты, m pranc. exposant… … Fizikos terminų žodynas

показатель адиабаты (изоэнтропии) газа — 3.30 показатель адиабаты (изоэнтропии) газа (по ГОСТ 8.586.1): Отношение относительного изменения давления к соответствующему относительному изменению плотности газа в процессе изменения его состояния без теплообмена с окружающей средой. Источник … Словарь-справочник терминов нормативно-технической документации

показатель — 3.7 показатель (indicator): Мера измерения, дающая качественную или количественную оценку определенных атрибутов, выведенную на основе аналитической модели, разработанной для определенных информационных потребностей. Источник … Словарь-справочник терминов нормативно-технической документации

показатель изоэнтропии (адиабаты) — является термодинамической характеристикой потока сжимаемых сред, отображающей термодинамический процесс, происходящий без теплообмена с окружающей средой. Показатель изоэнтропии равен отношению относительного изменения давления к… … Справочник технического переводчика

Гюгоньо адиабата — Адиабаты Гюгоньо. Гюгоньо адиабата [по имени французского учёного П. А. Гюгоньо (P. H. Hugoniot)], ударная адиабата, — зависимость, связывающая термодинамические переменные по обе стороны ударной волны, а также кривая в плоскости p—V… … Энциклопедия «Авиация»

Гюгоньо адиабата — Адиабаты Гюгоньо. Гюгоньо адиабата [по имени французского учёного П. А. Гюгоньо (P. H. Hugoniot)], ударная адиабата, — зависимость, связывающая термодинамические переменные по обе стороны ударной волны, а также кривая в плоскости p—V… … Энциклопедия «Авиация»

Гюгоньо адиабата — Адиабаты Гюгоньо. Гюгоньо адиабата [по имени французского учёного П. А. Гюгоньо (P. H. Hugoniot)], ударная адиабата, — зависимость, связывающая термодинамические переменные по обе стороны ударной волны, а также кривая в плоскости p—V… … Энциклопедия «Авиация»

Гюгоньо адиабата — Адиабаты Гюгоньо. Гюгоньо адиабата [по имени французского учёного П. А. Гюгоньо (P. H. Hugoniot)], ударная адиабата, — зависимость, связывающая термодинамические переменные по обе стороны ударной волны, а также кривая в плоскости p—V… … Энциклопедия «Авиация»

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/1099064

Читайте также:  Можно ли делать маску из глины после бани
Оцените статью
Про баню