Таблица сухого перегретого водяного пара

Таблицы перегретого пара

В табл. III приведены термодинамические свойства воды и перегретого пара. По этим таблицам для заданных давлений и температур можно найти удельный объем, энтальпию и энтропию однофазной среды – воды и перегретого пара.

В первом столбце указаны температуры перегретого пара, расположенные в порядке их возрастания, начиная от 0 до 1000 о С. Для каждой температуры даются значения v, h и s, расположенные в последующих столбцах при различных давлениях перегретого пара.В строках по горизонтали указаны давления начиная от 1 кПа до 100 МПа. Таким образом, эта таблица дает возможность непосредственно или интерполяцией найти значения указанных в ней параметров, не прибегая к вычислениям.

По табл. IV можно определить истинную массовую изобарную теплоемкость воды и водяного пара в зависимости от давления и температуры. В табл. V определяется скорость звука в воде и водяном паре. Пользуясь табл. VI, можно определить поверхностное натяжение воды σ, изобарную теплоемкость , теплопроводность λ, динамическую вязкость µ, число Прандтля Pr для воды и пара в состоянии насыщения. В табл.VII–IX определяется динамическая вязкость µ, теплопроводность λ и число Прандтля Pr воды и водяного пара.

Рис. 6.4. Термодинамические свойства воды и перегретого пара

6.3. sT-диаграмма

Для изображения в системе sT-координат процесса парообразования необходимо пользоваться такими соотношениями для этого процесса, которые были бы выражены через параметры s и Т. При построении sT-диаграммы для первой стадии парообразования нагрева 1 кг воды от 0 о С до температуры кипения – пользуются уравнением:

, (6.1)

в котором Т ≤ и s ≤ .

Если Т равно 273 К (т.е. 0 о С), как видно из уравнения, s = 0 и, следовательно, точка, определяющая это состояние воды, должна лежать на оси ординат. Обозначим эту точку через А (рис. 6.1).

Рис. 6.1. Изображение процесса парообразования при постоянном давлении

Если воду подогреть до температуры, положим, Т1, то энтропия, увеличиваясь, станет равной s1, и состояние воды будет определяться точкой 1. Если подогреть воду больше, то температура ее будет возрастать, принимая значения Т2, Т3 и т.д. до температуры , когда вода начнет кипеть. При этом энтропия воды будет также все время увеличиваться и принимать значения соответственно s2, s3и, наконец, s’ (при температуре, равной ).

Состояние пара при указанных значениях температуры и энтропии будет на диаграмме определяться точками 2, 3 и т.д. точкой В. Если через все эти точки провести плавную кривую, то она будет графически изображать характер изменения энтропии при нагревании воды от 0 о С до .

При дальнейшем подводе теплоты вода начнет превращаться в пар, энтропия будет продолжать увеличиваться, но температура не будет изменяться, поэтому линия процесса для этой стадии парообразования изобразится в виде прямой ВС, параллельной оси абсцисс. Точка С определяет состояние, в котором вся вода превратилась в пар (состояние сухого пара). Изменение энтропии в процессе парообразования, т.е. от точки В до точки С, может быть подсчитано по уравнению

. (6.2)

При дальнейшем подводе теплоты пар перейдет в область перегрева, при этом будут возрастать энтропия и температура его. Линия процесса для данной стадии парообразования CD строится по уравнению

= 2,3 lg . (6.3)

Таким образом, весь процесс получения перегретого пара изобразится ломаной линией ABCD.

Значение энтропии пара в точке С может быть подсчитано по уравнению

. (6.4)

Изменение энтропии изобразится на диаграмме суммой отрезков и ВС; следовательно,

ВС, (6,5)

откуда следует, что

ВС = . (6.6)

Если процесс парообразования не доводить до конца, т.е. остановиться на какой-нибудь точке Е, которая будет определять состояние влажного пара степени сухости х, то изменение энтропии можно подсчитать по уравнению

. (6.7)

ВЕ, (6.8)

откуда следует, что

ВЕ = . (6.9)

Деля уравнение (6.9) на уравнение (6.6), получим

= х.

Следовательно, отношение равно степени сухости пара. Если повысить давление воды, из которой был получен перегретый пар, то очевидно, что при температуре, соответствующей точке В, кипение еще не наступит; для того чтобы вода закипела, ее необходимо подогреть до более высокой температуры, при этом увеличится и энтропия. Момент начала кипения определится точкой , расположенной на продолжении линии АВ, а состояние сухого пара – (рис. 6.2).

Читайте также:  Проекты бань с газовой печью

Если же давление воды понизить, то момент начала кипения изобразится какой-нибудь точкой В1, лежащей также на прямой АВ, но ниже точки В. При этом давлении состояние сухого пара изобразится точкой С1.

Беря разные значения давлений воды, получим ряд точек: В1, В2, В3 и т.д., соответствующих началу кипения воды, и ряд точек: С1, С2, С3 и т.д., соответствующих состоянию сухого пара. Если через эти точки провести плавные линии, то на диаграмме получатся две кривые АК и : первая из них будет являться кривой жидкости, разделяющей области жидкости и влажного насыщенного пара, разделяющей области влажного и перегретого паров. Как видно на чертеже, эти линии сходятся и точка пересечения их, очевидно, является критической точкой К, о которой уже говорилось раньше.

Если на линиях ВС, В1 С1, В2 С2 и т.д. нанести точки Е, Е1, Е2, Е3 и т.д., соответствующие какому-нибудь значению степени сухости, и провести через них плавную кривую, то получим так называемую линию постоянной степени сухости (или постоянного паросодержания) КЕ4 .

Рис. 6.2. sT ― диаграмма водяного пара (схема)

Таких линий для различных значений степени сухости можно нанести на диаграмме несколько; тогда получим ряд кривых, также сходящихся в критической точке.

В sT-диаграмме площадь, ограниченная линией процесса, осью абсцисс и крайними ординатами, определяет количество теплоты, участвующей в процессе. Применим это свойство sT-диаграммы к процессу парообразования, который изобразим линией Ааbс (рис. 6.3).

Процесс превращения кипящей воды в пар при этом изобразится линией ab. Согласно указанному свойству площадь прямоугольника abmn должна определять теплоту парообразования r. Действительно, для конечной точки этого процесса – точки b, когда пар превратится в сухой, значение энтропии находят по уравнению:

.

.

Рис. 6.3. Изображение в осях sT теплоты в процессе парообразования

На рис. 6.3 значение температуры определяется отрезком an, т.е. высотой прямоугольника abmn, а – отрезком nm, равным основанию этого прямоугольника.

Для других стадий парообразования площадь 0Aan определяет количество теплоты , которое требуется подвести к воде, взятой при 0 о С, чтобы довести ее до кипения, а площадь mbcf – количество теплоты, затрачиваемый на перегрев.

Понятно, что сумма площадей 0Aan и nabm представляет величину полной теплоты сухого пара . Если же к эти двум площадям прибавить еще и площадь mbcf, то получим графическое изображение величины полной теплоты перегретого пара λ. Для влажного пара, состояние которого определяется, например, точкой е, теплота будет равна сумме площадей 0Aan и naet. Обратное протекание процесса от точки с к точке А связано с уменьшением энтропии, а следовательно, и с отводом теплоты от рабочего тела. При этом указанные площади будут представлять собой количества отведенной теплоты.

6.4. hs-диаграмма

sT-диаграмма является очень наглядной при различных исследованиях, связанных с теплотой. Однако в расчетной работе эта диаграмма неудобна тем, что для нахождения по ней количества теплоты, участвующей в процессе, нужно измерять площадь. В тех случаях, когда линия процесса является кривой, это представляет некоторые затруднения. Поэтому в теплотехнических расчетах часто пользуются диаграммой, в которой по оси ординат отложены величины энтальпии, а по оси абсцисс – изменение энтропии. Для того чтобы найти величину энтальпии по такой диаграмме, а следовательно, и количество теплоты, необходимо измерить лишь длину соответствующего отрезка по оси ординат, что, конечно, гораздо проще, чем измерять площадь. Эта диаграмма получила название
si-
диаграммы.

Рис. 6.4. si-диаграмма водяного пара (схема)

На нее наносятся обычно те же линии, что и в sT-диаграмме, т.е. кривые жидкости и сухого насыщенного пара, линии постоянных давлений и линии постоянных степеней сухости. Кроме того, на si-диаграмме наносятся линии постоянных температур, которые в sT-диаграмме имеют вид горизонтальных линий. АК – линия жидкости, КВ – линия сухого пара.

На практике обычно не приходится иметь дела с очень влажными парами, область которых находится в нижней части si-диаграммы. Поэтому для практических целей пользуются только правой верхней ее частью, что дает возможность выполнить ее в более крупном масштабе и сделать более подробной и удобной для пользования. Такая диаграмма построена профессором Вукаловичем.

Дата добавления: 2015-04-21 ; просмотров: 7865 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник статьи: http://helpiks.org/3-26545.html

Что такое насыщенный и перегретый пар

Термины насыщенный пар и перегретый пар относятся к термодинамическому состоянию воды. Вода и пар являются средами, используемыми для теплообмена в котловых установках благодаря своей доступности и высокой теплоемкости. Особенно эффективно передавать тепло посредством испарения и конденсации воды, которая обладает большой скрытой теплоты испарения.

Читайте также:  Срубы бань 5х4 с мансардой

Насыщенный пар (НП) и перегретый пар (ПП) относятся к определенному давлению среды. Первый НП может существовать во влажном и сухом состоянии, а перегретый ПП – только в сухом, поскольку не может содержать в своем составе частиц воды.

Чаще всего эти понятия применяются в теплоэнергетике, для расчета термодинамических циклов в контуре парового котла и в паровых турбинах, генерирующих электрическую энергию на ТЭЦ, ТЭС, ГРЭС и АЭС.

Что такое насыщенный пар

Водяной пар, пребывающий в термодинамическом равновесии с котловой водой, является насыщенным. Это формулировка дает понимание того, что давление насыщенного пара при температуре может иметь только одно значение

В котлоагрегатах парообразование протекает при постоянном давлении и подводе тепла к котловой воде от уходящих газов. Этот процесс базируется на следующих последовательных стадиях: подпитка котла водой, подогрев ее до температуры точки насыщения, и образование сухого насыщенного пара, когда вся жидкость испаряется из него.

В паровых котлах питательная вода, пройдя через экономайзер, попадает в барабан. Из него более холодные потоки под воздействием силы тяжести опускаются по необогреваемым трубам, а поднимаются по подъёмным топочным экранам обогреваемые более горячими дымовыми газами.

Здесь начинается процесс парообразования, поскольку температура воды достигает значения точки насыщения при рабочем давлении в котлоагрегате.

Плотность пароводяной смеси в экранных пакетах уменьшается и становится ниже плотности воды в опускных трубах, что создает напор для движения пароводяной смеси по экранам в барабан, где смесь сепарируется на воду и пар.

В закрытой поверхности нагрева при не меняющейся температуре в точке насыщения устанавливается термодинамическое равновесие между котловой водой и водяным паром. Число молекул пара, выделяющихся из поверхности воды за определенное время, будет равняться числу молекул сконденсированного пара, которые перейдут обратно в воду в барабане котла.

Давление насыщенного пара

Давление насыщения в котле зависит от температуры котловой воды в равновесном термодинамическом состоянии. При росте давления, пар сжимается и баланс нарушается. Плотность пара первоначально несколько возрастает, и из паровой среды в котловую воду будет переходить больше молекул конденсата, чем наоборот.

Поскольку количество молекул, переходящих из воды в единицу времени связано исключительно с температурой, то сжатие паровой среды не будет влиять на изменение этого числа.

Процесс будет протекать пока не возникнет термодинамическое равновесие, а следовательно, и концентрация возвращающихся молекул не достигнет первоначального уровня. Таким образом, Тнп напрямую зависит от давления насыщения в котле.

Таблица насыщенного пара

Характеристики сухого НП, приводятся в Таблице водяного пара. В ней указывают Т (С), при точке кипения котловой воды и давление (кПа и мм. рт.ст.) при которой этот процесс протекает.

Дополнительно в таблице могут указываться и другие параметры пара:

  • eдельный объем, м3/кг;
  • плотность, кг/м3;
  • удельная энтальпия, кДж/кг
  • удельная теплота парообразования, кДж/кг.

Плотность насыщенного пара

Плотность НП определяют по формуле.

D st = 216,49 * P / (Z st * (t + 273))

  • D st — плотность насыщенного пара в кг / м3;
  • P- абсолютное давление пара в барах;
  • t — температура в градусах Цельсия;
  • Z st — коэффициент сжимаемости насыщенного пара при Р и t.

В этом уравнении символ «Z st» обозначает коэффициент сжимаемости насыщенного пара при абсолютной величине давления насыщенного водяного пара P, бар. Это удобное уравнение действительно для диапазона давления пара от 0,012 до 165 бар, с соответствующим диапазоном температур насыщения от 10 до 360 С.

Влажность насыщенного пара

Когда котлоагрегат нагревает воду, пузырьки, прорывающиеся через слой воды, захватываются паром. Влажный пар определяется как пар, в котором вода присутствует в виде микрокапель паров воды. В этом случае соотношение может составлять от 0 до 1. Если пар имеет 20 % воды по объему — он считается сухим на 80% или имеет долю сухости 0,8.

Таблицы НП содержит значения, такие как температура, энтальпия и удельный объем для сухого НП, но не для влажного. Для того чтобы их определить потребуется воспользоваться формулами, учитывая соотношение двух сред:

Удельный объем (v) мокрого пара

v = X * v g + (1 — X) * v f

  • X = сухость (% / 100);
  • v f = удельный объем жидкости;
  • v g = удельный объем НП.

Удельная энтальпия пара сухостью Х:

h = h f + X * h fg

  • X = сухость (%);
  • h f = удельная энтальпия жидкости;
  • h fg = удельная энтальпия НП.

Чем влажнее пар, тем ниже значения удельного объема, теплосодержание, энтальпия и энтропия. Таким образом сухость пара оказывает существенное влияние на все эти значения.

Читайте также:  Дымоходные трубы для печи бани

Задачей теплоэнергетиков является организация процессов парообразования в котле с сухостью 100%. Для этого в барабанах котлов устанавливают специальные сепарационные устройства, отделяющие пар от воды.

Перегретый пар

Перегретый пар — это пар с температурой, превышающей его температуру кипения при абсолютном давлении, при котором проводились измерение температуры. Давление и температура перегретого пара не зависят друг от друга, поскольку температура может увеличиваться, в то время как давление остается постоянным.

Процесс перегрева водяного пара на диаграмме Ts представлен на рисунке между состоянием E и кривой насыщенного пара. Чтобы оценить тепловую эффективность цикла, энтальпия должна быть получена из таблиц перегретого пара.

Процесс перегрева — единственный способ увеличить пиковую температуру цикла Ренкина и повысить эффективность без увеличения давления в котле. Это требует добавления в конструкцию котла особого теплообменника, называемого пароперегревателем.

В пароперегревателе дальнейший нагрев при фиксированном давлении приводит к увеличению, как температуры, так и удельного объема. Наибольшее значение перегретого пара заключается в его огромной внутренней энергии, которая может быть использована для кинетической реакции для движения лопастей турбины, создающих вращательное движение вала.

Температура перегретого пара

Характеристики перегретого пара (ПП) аналогичны идеальному газу, но не равны насыщенному пару. Поскольку ПП не обладает зависимостью между температурой и давлением, при конкретном давлении он может вырабатываться в широком температурном диапазоне, что будет зависеть от площади нагрева пароперегревателя.

Перегретый пар отличается от насыщенного такими преимуществами:

  • gри равном давлении насыщения он обладает намного большей температурой;
  • обладает большим удельным объемом, что дает экономию энергоресурсов при использовании;
  • при снижении он не конденсируется, пока температура не упадет ниже точки насыщения при давлении среды.

Методы регулирования температуры перегретого пара

Довольно часто для технологических процессов, требуется получение перегретого пара строго определенной температуры. Для того чтобы снять ее излишки, обычно используют три метода воздействия на температуру ПП:

  • cмешивание разных температурных потоков, когда в ПП впрыскивают котловую воду или паровой теплоноситель меньшего теплосодержания;
  • поверхностное охлаждение, заключается в перенаправление ПП через систему специальных теплообменных аппаратов, выполняющих роль охладителей;
  • изменение тепловосприятия потока, реализуется через изменение температуры или расхода уходящих котловых газов.

В теплоэнергетике в котлах высокого давления наиболее часто применяют первый метод, путем впрыскивания в поток ПП питательной воды или конденсата от турбогенератора. Впрыском насыщенного пара, как правило, регулируют температуру вторичного перегрева пара.

Получение перегретого пара

Пароперегреватель устройство, устанавливаемый в котлоагрегате, вырабатывает перегретый пар с параметрами, превышающими температуру насыщения в барабане котла. Он относится к особо критичным котловым элементам, поскольку из-за высоких температур ПП металл конструкции функционирует в предельно-допустимых условиях.

Пароперегреватели бывают основного типа, работающие в зоне сверхкритического давления и промежуточного типа, которые направляют пар отработанный в турбине для промперегрева.

Кроме того пароперегреватели классифицируются по тепловосприятию на конвективные, установленные в конвективной части котла, радиационные — расположены около топочных экранов и ширмовые — установленные в верхней части топки. По направлению движения потоков ПП и уходящих котловых газов выпускают ПП : прямоточные, противоточные и смешанные.

Использование перегретого пара в технике

В современных паровых турбинах применяют ПП с температурой перегретого пара существенно выше критической (374C).

Перегретый пар используется в турбинах для повышения теплового КПД. Другое использование перегретого пара:

  • Пищевые технологии.
  • Технологии очистки.
  • Катализ / химическая обработка.
  • Технологии поверхностной сушки.
  • Технологии отверждения.
  • Энергетика.
  • Нанотехнологии.

Котлы перегретого пара

В России применяется ГОСТ 3619-76 на паровые котлоагрегаты, в котором установлены параметры насыщенного и перегретого пара, а также паровая производительность и температура воды для питания котла.

Современная российская энергетика использует котлоагрегаты производительностью вырабатывающих 1000/1650/2650/3950 т/ч пара для турбогенераторов соответствующей мощностью 300/500/800/1200 МВт, работающих на сверхкритических параметрах по давлению 25,5 МПа и Тпп=545С.

Энергетические котлы классифицируются по давлению пара — высокого от 10 до 14 МПа и сверхкритического свыше 25,5 МПа. Котлоагрегаты сверхвысокого давления, обычно, выполняют с вторичным перегревом пара.

Паровые котлоагрегаты малой и средней паропроизводительности используются для производства насыщенного и перегретого пара с характеристиками до 3,9 МПа и Т=450 С. Они эксплуатируются на промпредприятиях и в жилищно-коммунальном хозяйстве для производственно-технологических нужд и в системах центрального теплоснабжения.

Типичными представителями агрегатов данной категории являются котел Е (ДЕ) производительностью пара от 1 до 25 т/ч, Е (КЕ) производительностью пара до 25 т/ч с газомазутной горелкой и ДКВР производительностью до 20 т/ч. Их применение – источники тепловой энергии для центрального теплоснабжения с параметрами насыщенного и перегретого пара.

Источник статьи: http://kotle.ru/sovety/nasyshhennyj-i-peregretyj-par

Оцените статью
Про баню