Таблица термодинамических свойств влажного водяного пара

Таблицы термодинамических свойств воды и водяного пара

Инженерные расчеты процессов изменения состояния воды и водяного пара и паровых циклов осуществляются по таблицам термодинамических свойств воды и водяного пара [11]. Эти таблицы составлены на основании надежных экспериментальных данных с согласованием результатов экспериментов и расчетных величин на межгосударственных уровнях.

В нашей стране утвержденным стандартом являются таблицы термодинамических свойств воды и водяного пара, составленные М.П.Вукаловичем, С.Л.Ривкиным, А.А.Александровым [11]. Они включают в себя данные по термодинамическим свойствам воды и водяного пара в диапазоне изменений давления от 0,0061 до 1000 бар и температуры от 0 до 1000 о С.

Таблицы содержат все данные, необходимые для расчетов термодинамических параметров в области жидкости, влажного пара и в области перегретого пара. В таблицах не приведены значения внутренней энергии, для ее расчета используется соотношение u = h — Рv. При расчете внутренней энергии необходимо обратить внимание на соответствие единиц измерения энтальпии h, она в таблицах приведена в килоджоулях на килограмм (кДж/кг), и произведения pv, при использовании давления в килопаскалях (кПа) это произведение тоже будет в килоджоулях на килограмм (кДж/кг).

Таблицы построены следующим образом. Первая и вторая таблицы описывают свойства воды и водяного пара в состоянии насыщения как функции от температуры (1-я таблица) и давления (2-я таблица). Эти две таблицы дают зависимость параметров на линиях x = 0 (вода в состоянии насыщения) и x = 1 (сухой насыщенный пар) от температуры и давления. Нахождение всех параметров ведется по одной величине; в табл. 1 – по температуре, в табл. 2 – по давлению насыщения. Эти определяющие параметры находятся в крайних левых столбцах таблиц. Далее в правых столбцах идут соответствующие Рн и tн величины: v’ и v», h’ и h», r=h»-h’, s’ и s», s»-s’. Параметры с одним штрихом относятся к воде в состоянии насыщения, с двумя штрихами – к сухому насыщенному пару. Величины параметров влажного насыщенного пара определяются расчетным путем с использованием степени сухости x. Для облегчения этих расчетов в таблицах даны величины r и s»-s’. Например, определение удельного объема, энтальпии и энтропии влажного пара ведется по формулам

Диапазон определяющих параметров этих таблиц: от t=0 o С до tкр=374,12 o С и от Р=0,0061 бар до Ркр=221,15 бар, т.е. нижний предел – тройная точка воды, верхний предел – критическая точка воды.

Необходимо отметить, что в качестве определяющего параметра в табл. 1 и 2 можно использовать любой из параметров (v’, v», h’, h», s’, s»), а не только давление и температуру насыщения. Поскольку в инженерной практике Р и t выступают чаще всего в качестве определяющих параметров, их и поместили в левой колонке.

Следующая – третья – таблица описывает свойства воды и перегретого пара. Их диапазон от 0 до 1000 o С (может быть и до 800 o С) и от 1 кПа до 100 МПа. В качестве определяющих параметров здесь необходимы две величины. В 3-х таблицах – это давление – верхняя горизонтальная строка – и температура – левая крайняя колонка. Под строкой давлений дается прямоугольник, в котором приведены все параметры состояния насыщения, соответствующие данному давлению. Это позволяет быстро ориентироваться в фазовом состоянии воды и пара и, не листая таблицы, выполнять необходимые расчеты для различных фазовых состояний воды. Каждому давлению и температуре в 3-х таблицах даны v, h, s в соответствующих вертикальных колонках.

Читайте также:  Столбчатый фундамент под баню из сруба

Для наглядной ориентации параметры жидкой фазы и паровой отделены в этих колонках жирными горизонтальными линиями. Выше этих линий находится жидкая фаза воды, ниже – перегретый пар. При давлениях выше критического (22,12 МПа) эти разделительные линии отсутствуют, т.к. при сверхкритических параметрах нет линии видимого фазового перехода жидкости в пар.

В табл. 3 в качестве определяющих, кроме Р и t, может выступать любая пара параметров: Р, t, v, h, s.

При ориентации в фазовых состояниях воды и пара с использованием таблиц необходимо помнить:

1) при Р = const:

t tн – перегретый пар,

t = tн – необходим 3-й параметр,

h = h’- кипящая вода,

h = h» – сухой насыщенный пар,

h’ h» – перегретый пар,

h’ Рн – жидкая фаза воды,

Р = Рн – аналогично t = tн при Р=const с ориентацией на h, v, s.

Некоторыение выпуски таблиц включают в себя 2 части: 1-я в СИ, где Р – в Па, h – в кДж/кг, и 2-я в СГС, где Р – в кгс/см 2 , а h – в ккал/кг.

6.8. Диаграмма T,s для воды и водяного пара

Для иллюстрации процессов изменения состояния воды и водяного пара и паровых циклов широко используется T,s- диаграмма. Она дает большой объем информации, позволяющий судить об особенностях энергетических эффектов и о тепловой экономичности циклов.

В тепловой диаграмме T,s наносятся линии постоянных параметров воды и пара и функций состояния (рис. 6.21).

Нулевое значение энтропии соответствует тройной точке жидкости (0,01 о С или 273,16 К и 611,2 Па). Построение линий постоянных параметров и функций состояния проводится по данным таблиц термодинамических свойств воды и водяного пара. Используя табличные значения зависимости между температурой насыщения Тн и энтропией кипящей жидкости s’ и сухого насыщенного пара s», можно построить нижнюю (х=0) и верхнюю (х=1) пограничные кривые. Эти пограничные кривые соединяются в критической точке К с координатами Ткр=647,27 К (374,12 о С) и sкр = 4,4237 кДж/(кг·К). Линия х = 0 начинается в тройной точке жидкости при Т = 273,16 К и s1‘ = 0. Сухому насыщенному пару в тройной точке соответствует энтропия sN«=9,1562 кДж/(кг·К) (см. рис. 6.21, точка N). Ниже горизонтали 1N находится зона сублимации, здесь слева от линии х = 1 – область твердой фазы и пара, а справа от линии х = 1 – область перегретого пара. Выше линии х = 0 находится область жидкой фазы, а выше линии х=1 находится область перегретого пара. Видимой зоны перехода от области жидкой фазы к области пара при сверхкритических параметрах нет, условно этот переход можно брать по критическим параметрам Ткр, Ркр или vкр, считая область выше критической точки и правее Ркр или vкр областью пара.

Изобара докритического давления в T,s- диаграмме представляет собой сложную кривую 1234. Она состоит из трех частей: 12 – в области жидкости, 23 – в области влажного насыщенного пара, 34 – в области перегретого пара. Конфигурация изобары может быть установлена при использовании углового коэффициента из выражения

откуда угловой коэффициент будет равен

. (6.28)

Исходя из выражения углового коэффициента (6.28), который определяет угол наклона касательной к изобаре, следует, что в области жидкости и в области перегретого пара при подводе теплоты значения Т/cp и s возрастают, угол наклона касательной увеличивается, т.е. здесь изобара представляет собой вогнутую кривую. Причем в области жидкости при небольших давлениях cp – величина, мало изменяющаяся в зависимости от температуры, и изобара представляет собой логарифмическую кривую. В области перегретого пара cp сильно зависит от температуры и изобара представляет собой логарифмическую кривую с переменной логарифмикой (о характере изменения cp в области перегретого пара было написано ранее). В области влажного насыщенного пара изобара совпадает с изотермой, cp=±¥, и в T,s- диаграмме она представляет горизонтальную прямую 23.

Читайте также:  Проект внутри бани 3х4

При небольших давлениях (до 100 бар) изобары жидкости очень близки к нижней пограничной кривой (х = 0). Поэтому при использовании T,s- диаграммы для иллюстраций процессов воды и пара часто считают, что изобары жидкости совпадают с линией х=0.

Площадь под изобарой 12 (нагрев жидкости) соответствует теплоте жидкости q’, под изобарой 23 (парообразование) – теплоте парообразования r, под 34 (перегрев пара) – теплоте перегрева qп. Площадь под процессом 2e соответствует теплоте, расходуемой на испарение x-й доли из 1 кг насыщенной жидкости.

Для любого состояния в области влажного насыщенного пара (точка е) степень сухости может быть определена графически в виде отношения двух отрезков изобары между пограничными кривыми х=0 и х=1:

.

По этому принципу можно построить линии постоянных степеней сухости х=const.

Изобара критического давления в критической точке К имеет перегиб, здесь касательная к ней есть горизонтальная прямая. Изобары сверхкритического давления не попадают в область влажного пара и представляют собой непрерывно повышающиеся кривые с точками перегиба, в которых касательные имеют минимальный наклон. Этим точкам соответствуют максимальные значения изобарной теплоемкости.

Изохоры с v о С).

Изохоры с v > vкр в области перегретого пара представляют собой вогнутые кривые (круче изобар), а в области влажного пара — кривые двоякой кривизны: выпуклые — при больших степенях сухости и вогнутые — при малых степенях сухости. При этом они пересекают только правую пограничную кривую х = 1.

На рис. 6.21 показаны линии постоянных энтальпий h=const. В области перегретого пара изоэнтальпа представляет собой плавную кривую с отрицательным тангенсом угла наклона к ней. Изоэнтальпы, переходящие из области влажного пара в область жидкости, имеют ярко выраженную точку излома на линии х = 0. В области жидкости наклон изоэнтальпы изменяется так, что при малых значениях энтальпий с повышением давления температура понижается, а при больших значениях энтальпий повышение давления сопровождается и повышением температуры.

На рис. 6.21 в точках 2 и 3 проведены касательные к пограничным кривым х=0 и х=1. Подкасательные c’ и c» представляют собой теплоемкости жидкости и сухого насыщенного пара на пограничных кривых (при изменении состояния по х=0 и х=1). Оказывается, что c’>0, а c»

Источник статьи: http://mydocx.ru/1-38651.html

Теплофизические свойства водяного пара: плотность, теплоемкость, теплопроводность

Теплофизические свойства водяного пара при различных температурах на линии насыщения

В таблице представлены теплофизические свойства водяного пара на линии насыщения в зависимости от температуры. Свойства пара приведены в таблице в интервале температуры от 0,01 до 370°С.

Каждой температуре соответствует давление, при котором водяной пар находится в состоянии насыщения. Например, при температуре водяного пара 200°С его давление составит величину 1,555 МПа или около 15,3 атм.

Удельная теплоемкость пара, теплопроводность и его динамическая вязкость увеличиваются по мере роста температуры. Также растет и плотность водяного пара. Водяной пар становится горячим, тяжелым и вязким, с высоким значением удельной теплоемкости, что положительно влияет на выбор пара в качестве теплоносителя в некоторых типах теплообменных аппаратов.

Например, по данным таблицы, удельная теплоемкость водяного пара Cp при температуре 20°С равна 1877 Дж/(кг·град), а при нагревании до 370°С теплоемкость пара увеличивается до значения 56520 Дж/(кг·град).

Читайте также:  Как заготавливать кленовые веники для бани

В таблице даны следующие теплофизические свойства водяного пара на линии насыщения:

  • давление пара при указанной температуре p·10 -5 , Па;
  • плотность пара ρ″, кг/м 3 ;
  • удельная (массовая) энтальпия h″, кДж/кг;
  • теплота парообразованияr, кДж/кг;
  • удельная теплоемкость пара Cp, кДж/(кг·град);
  • коэффициент теплопроводности λ·10 2 , Вт/(м·град);
  • коэффициент температуропроводности a·10 6 , м 2 /с;
  • вязкость динамическая μ·10 6 , Па·с;
  • вязкость кинематическая ν·10 6 , м 2 /с;
  • число Прандтля Pr.

Удельная теплота парообразования, энтальпия, коэффициент температуропроводности и кинематическая вязкость водяного пара при увеличении температуры снижаются. Динамическая вязкость и число Прандтля пара при этом увеличиваются.

Будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100! Например, теплопроводность пара при температуре 100°С равна 0,02372 Вт/(м·град).

Теплопроводность водяного пара при различных температурах и давлениях

В таблице приведены значения теплопроводности воды и водяного пара при температурах от 0 до 700°С и давлении от 0,1 до 500 атм. Размерность теплопроводности Вт/(м·град).

Черта под значениями в таблице означает фазовый переход воды в пар, то есть цифры под чертой относятся к пару, а выше ее — к воде. По данным таблицы видно, что значение коэффициента теплопроводности воды и водяного пара увеличивается по мере роста давления.

Примечание: теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность водяного пара при высоких температурах

В таблице приведены значения теплопроводности диссоциированного водяного пара в размерности Вт/(м·град) при температурах от 1400 до 6000 K и давлении от 0,1 до 100 атм.

По данным таблицы, теплопроводность водяного пара при высоких температурах заметно увеличивается в области 3000…5000 К. При высоких значениях давления максимум коэффициента теплопроводности достигается при более высоких температурах.

Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Источник статьи: http://thermalinfo.ru/svojstva-gazov/neorganicheskie-gazy/teplofizicheskie-svojstva-teploprovodnost-vodyanogo-para-na-linii-nasyshheniya

Рассчитать Tермодинамических и Tранспортных Свойствах Воды и Водяного Пара

Oсобенности:

Калькулятор Паровые Таблицы и (Ново) Калькулятор Газ Tаблицы

  • Не требует установки;
  • Всегда работу с последней версией;
  • Доступ с любого компьютера в мире;
  • Точная и простая в использовании;
  • Молье диаграммы (SI и Английском единиц)
  • Полная поддержка для мобильных платформ, таких как iPad, iPhone, IPod и т.д. сенсорный.
  • Сохранить данные в Excel.

Премиум возможностей требуется регистрация.

Для быстро производительности используйте последнюю версию вашего любимого браузера
(Chrome 25.0+, FF 20.0+, IE 9.0+, Safari 5.1.2+, Opera 15.0+).

Сайт обеспечивает полностью функциональной, профессиональные качества воды и пара таблицы веб-прило.

«Калькулятор Паровые Таблицы» основан на промышленные разработки для расчета свойств воды и пара, называемые «IAPWS формулирования промышленной 1997 для термодинамических свойств воды и водяного пара (IAPWS-IF97)».

Для транспортных свойств расчеты основаны на последних международно признанных уравнения имеется также IAPWS.

«Калькулятор Газ Tаблицы» высчитывает калорийные свойства влажного воздуха и недиссоциированного продуктов сгорания от 200 К до 3300 К. Она также обеспечивает диссоциации модели позволяющий рассчитывать калорийность свойствами диссоциировавших продукты сгорания при температурах до 2000 К, предполагая полное сжигание с &#955 > 1.05.

Модель основана на новой системе уравнений для технического применения, звонил «Термодинамическим Свойством Модели для Влажного Воздуха и Продуктов Сгорания».

Формулировка была разработана D. B&#252cker, R. Span and W. Wagner, и представлены в «Journal of Engineering for Gas Turbines and Power» (Январь 2003).

Способствовать лучший вариант перевода, отправить: webmaster.

Источник статьи: http://www.steamtablesonline.com/ru/default_ru.aspx

Оцените статью
Про баню