Чему равна энтальпия сухого насыщенного пара

Таблицы сухого насыщенного пара

Для нахождения параметров сухого пара ts, v”, h” и прочих практически пользуются вместо приведенных в предыдущем разделе формул (в некоторых случаях приближенных) специальными таблицами, в которых приводятся готовые значения этих параметров, вычисленные на основании опытов и теоретических исследований.

Таких таблиц было предложено несколько. В настоящее время широкой известностью пользуются таблицы Теплофизических свойств воды и водяного пара, составленные С.Л. Ривкиным и А.А. Александровым или А.А. Александровым, Б.А. Григорьевым (рис. 6.1)

В издании А.А. Александрова и Б.А. Григорьева 2006 г. приведены девять таблиц (табл. I–IX). В табл. I (рис. 6.2) приведены термодинами-ческие свойства воды и водяного пара в состоянии насыщения (по температурам). В первом столбце таблицы указаны температуры пара, расположенные в порядке возрастания от 0 до 374 о С; в остальных столбцах приведены соответствующие им значения параметров кипящей воды и сухого насыщенного пара. В табл. II (рис. 6.3) приведены термоди-намические свойства воды и водяного пара в состоянии насыщения (по давлениям). В первом столбце таблицы указаны абсолютные давления пара, расположенные также в порядке их возрастания, начиная от 1,00 ∙ 10 3 Па и до 2,21∙ 10 7 Па, а в остальных столбцах приведены соответствующие им значения параметров кипящей воды и сухого насыщенного пара.

В тех случаях, когда требуется найти значение какого-либо из приве-денных в таблицах параметров для промежуточных значений температур и давлений, прибегают к интерполированию. Из табл. I и II видно, что с увеличением температуры и, следовательно, давления удельный объем жидкости v’ увеличивается (весьма незначительно), а удельный объем сухого пара v” уменьшается. При критическом значении температуры
= 374,15 о С оба эти объема становятся одинаковыми. Если значения удельных объемов v’ и v”для различных давлений нанести в системе
vp
– координат и провести через полученные таким путем точки кривые,
то получим диаграмму, подобную изображенной на рис. 5.3.

Рис. 6.1. Обложка таблицы теплофизических свойств воды и водяного пара

Рис. 6.2. Термодинамические свойства воды и водяного пара в состоянии насыщения

Рис. 6.3. Термодинамические свойства воды и водяного пара в состоянии насыщения

Интересное свойство водяных паров обнаруживается при рассмот-рении характера изменения величины энтальпии в зависимости от давления пара (колонка 6 в табл. II рис. 6.3).

Как видим, при давлении 1,00 ∙ 10 3 Па h”= 2513,7 кДж/кг. С увели-чением давления энтальпия увеличивается, достигая для давления 3,80 ∙ 10 6 Па максимального значения h”= 2801,8 кДж/кг, а затем постепенно умень-шается до 2087,5 кДж/кг при давлении 2,21 ∙ 10 7 Па. Таким образом, оказывается, что для получения сухого пара давлением, предположим, в 10 МПа, требуется подвести к нему меньше теплоты, чем для пара в 1 МПа (в первом случае h”= 2725 кДж/кг, а во втором h” = 2777 кДж/кг). В то же время пар давлением в 10 МПа способен совершать гораздо большую механическую работу, чем пар давлением в 1 МПа. Это свойство водяных паров является одной из причин, заставляющих стремиться к внедрению в промышленность и энергетику пара высокого давления.

Читайте также:  Дымоход в бане без сэндвич трубы

Дата добавления: 2015-04-21 ; просмотров: 2474 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник статьи: http://helpiks.org/3-26544.html

Большая Энциклопедия Нефти и Газа

Энтальпия — сухой насыщенный пар

Энтальпия сухого насыщенного пара приблизительно равна теплоте этого пара. [1]

Энтальпия сухого насыщенного пара при абсолютном давлении в 20 бар равна i 2799 2 кдж / кг. [2]

Так как энтальпия сухого насыщенного пара больше энтальпии влажного насыщенного пара, то при таком определении расхода он получается заниженным. [3]

Отсюда следует, что энтальпия сухого насыщенного пара приблизительно равна теплоте этого пара. [4]

Энтальпия воды г, энтальпия сухого насыщенного пара , энтальпия перегретого пара i в зависимости от давления приведены в прилагаемых таблицах. [5]

Из уравнения следует, что энтальпия сухого насыщенного пара приближенно равна его полной теплоте. [6]

Из табл. 8.1 видно, что при давлении пара р 1 0 МПа энтальпия сухого насыщенного пара i 2777 8 кДж / кг, что больше i 2680 кДж / кг. [7]

Чтобы превратить 1 кг кипящей воды при неизменной температуре в сухой насыщенный пар, требуется сообщить воде значительное количество теплоты, которая называется удельной теплотой испарения ( парообразования) при данном давлении и обозначается буквой г. Таким образом, энтальпия сухого насыщенного пара i i r, ккал / кг. [8]

ОП; dTp — внутренний диаметр ОП; Re WindTp / v n — число Рейнольдса; K — r / ( iia-i) — число фазового перехода; / ц, vjn — энтальпия и кинематическая вязкость пара перед испытательным участком; i — энтальпия сухого насыщенного пара при давлении на испарительном участке; NuadMAin — усредненное число Нуссельта на участке испарения; a — соответствующий ему коэффициент теплоотдачи от воды к пару; Я щ — коэффициент теплопроводности пара; dM — медианный диаметр капель; Prv / a — число Прандтля ( в работе не уточняется, по пару или по воде вычисляется число Прандтля); a — коэффициент теплопроводности; AfpB / pin — отношение плотностей воды и пара. [9]

Из таблиц сухих насыщенных паров ( см. приложение 1, 2, 3) видно, что с уменьшением tK энтальпия жидкости уменьшается. С увеличением / 0 энтальпия сухого насыщенного пара увеличивается и уменьшается удельный объем. Следовательно, с уменьшением tK и увеличением to холодопроизводительность холодильного агентЯд узрягтяет. [10]

Скрытая теплота парообразования с увеличением давления непрерывно уменьшается и при критическом давлении равна нулю. Это указывает на возможность уменьшения площади поверхностей нагрева, в которых из кипящей воды образуется насыщенный пар. Энтальпия сухого насыщенного пара при возрастании давления до 3 3 МПа увеличивается, а затем падает. [11]

Читайте также:  Баня комната отдыха кедр

Измерение влажности при помощи дроссельного калориметра основано на том, что взятая из трубопровода проба пара при проходе через сопло дросселируется, сохраняя постоянной ( ввиду незначительности тепловых потерь) свою первоначальную энтальпию. В результате дросселирования давление пара легко понижается. Это приводит к испарению содержащейся в паре влаги и перегреву его, так как энтальпия сухого насыщенного пара тем меньше, чем ниже давление пара. [12]

Парогенератор работает при постоянном давлении пара. При этом разные типы парогенераторов имеют различный уровень давления. В связи с этим важно знать, как зависят энтальпия кипящей воды, скрытая теплота парообразования, энтальпия насыщенного и перегретого пара от давления. С увеличением давления вплоть до критического ( ркр 22 13 МПа) энтальпия кипящей воды непрерывно возрастает. Следовательно, с повышением давления в парогенераторе площадь поверхностей нагрева, в которых происходит предварительный нагрев воды, должна увеличиваться. Скрытая теплота парообразования с увеличением давления непрерывно уменьшается и при критическом давлении равна нулю. Это указывает на возможность уменьшения площади поверхностей нагрева, в которых из кипящей воды образуется насыщенный пар. Энтальпия сухого насыщенного пара при возрастании давления до 3 3 МПа увеличивается, а затем падает. [13]

Источник статьи: http://www.ngpedia.ru/id620539p1.html

Параметры состояния жидкости и пара

Состояние влажного насыщенного пара определяется его давле­нием или температурой и степенью сухости х. Очевидно, значение х = 0 соответствует воде в состоянии кипения, а х = 1– сухому на­сыщенному пару.

Температура влажного пара есть функция только давления и определяется так же, как и температура сухого пара, по табличным значениям. Удельный объем влажного пара зависит от давления и от степени сухости и определяется из уравнения:

. (13.1)

Из этой формулы получаем значение:

. (13.2)

Для давлений до 3 МПа и х ≥ 0,8 можно пренебречь последним членом равенства. Тогда удельный объем влажного насыщенного пара:

Для больших давлений и малых следует пользоваться полной формулой.

Плотность влажного пара:

(13.4)

. (13.5)

Рис. 13.3 – hs – диаграмма процесса парообразования

Перегретый пар имеет более высокую температуру по сравне­нию с температурой U сухого насыщенного пара того же давления. Следовательно, в отличие от насыщенного пара перегретый пар определенного давления может иметь различные температуры. Для характеристики состояния перегретого пара необходимо знать два его параметра, например давление и температуру. Разность температур перегретого и насыщенного пара того же давления t – tн назы­вают перегревом пара.

Весьма важным в теплотехнических расчетах является опреде­ление количества теплоты, затрачиваемой на отдельные стадии процесса парообразования и изменения внутренней энергии.

Количество теплоты, затраченной для подогрева жидкости от 0 С до температуры кипения при постоянном давлении, называют теплотой жидкости. Ее можно определить как разность энталь­пий жидкости в состоянии кипения и жидкости при том же давле­нии и 0° С, т.е.

Читайте также:  Фундамент для бани слив воды

, (13.6)

а так как при невысоких давлениях с достаточной для техниче­ских расчетов точностью можно считать равным нулю, то

. (13.7)

Значения внутренней энергии жидкости можно вычислить из общей зависимости h = u + pv.

а так как величина рv’ мала, то при невысоких давлениях можно принимать

т.е. внутренняя энергия жидкости равна энтальпии жидкости. Зна­чения h’, а следовательно, и u’ приводятся в таблицах насыщенного пара.

Количество теплоты, необходимое для перевода 1 кг кипящей жидкости в сухой насыщенный пар при постоянном давлении, назы­вают теплотой парообразования и обозначают буквой r. Это коли­чество теплоты расходуется на изменение внутренней энергии, свя­занное с преодолением сил сцепления d между молекулами жидко­сти, и на работу расширения (ф).

Величину d называют внутренней теплотой парообразования, а величину ф – внешней теплотой парообразования. Очевидно,

ф = р (13.10)

Значения г приводятся в таблицах сухого насыщенного пара. Энтальпия h » сухого насыщенного пара определяется по форму­ле

, (13.12)

а изменение внутренней энергии при получении сухого насыщенно­го пара из 1 кг жидкости при 0 °С – из выражения:

Для влажного насыщенного пара имеем следующие соотноше­ния:

(13.14)

, (13.15)

где hx – энтальпия влажного насыщенного пара;

ux – внутренняя энергия влажного насыщенного пара. Количество теплоты, необходимое для перевода 1 кг сухого насы­щенного пара в перегретый при постоянном давлении, называется теплотой перегрева. Очевидно,

, (13.16)

где – истинная массовая теплоемкость перегретого пара при по­стоянном давлении.

В результате тщательных исследований установлено, что тепло­емкости cp перегретых паров зависят от температуры и давления.

Однако пользоваться этой зависимостью неудобно. Расчеты существенно упрощаются тем, что в таблицах водяного пара при­водятся значения энтальпии перегретого пара h(i). Поэтому теплота перегрева может быть найдена из выраже­ния:

. (13.17)

Энтропия водяного паря отсчитывается от условного нуля, в ка­честве которого принимают энтропию воды при 0,01 0 С и при давлении насыщения, соответствующем этой температуре, т.е. при давлении 611 Па.

Энтропия жидкости s’ определяется из выражения

, (13.18)

где с – теплоемкость воды, а – температура насыщения, К.

Значение теплоемкости для воды с достаточной точностью можно принять равным 4,19 кДж/(кг · К). Следовательно,

кДж/(кг · К) (13.19)

Если жидкость нагревается не до температуры кипения, а до произвольной температуры Т, то под Тн в формуле следует пони­мать эту произвольную температуру.

Энтропия сухого насыщенного пара s» определяется из уравнения

, (13.20)

где r – теплота парообразования.

Энтропия влажного насыщенного пара

, (13.21)

, (13.22)

где х – степень сухости пара.

Энтропии s’ и s» приведены в таблицах насыщенного пара, а r/Тн можно получить из этих же таблиц как разность s»–s’.

Энтропия перегретого пара может быть найдена из уравнения

. (13.23)

Значения s приводятся в таблице перегретого пара.

Источник статьи: http://studopedia.ru/3_1653_parametri-sostoyaniya-zhidkosti-i-para.html

Оцените статью
Про баню